

Building Open Source Scientific Equipment

How researchers are owning their instruments

FOSDEM 2019 – 03/02/2019 CAD and Open Hardware Dev Room Andre Maia Chagas Bit.ly/fosdfly

Who am I?

- Biology / Neuroscience
- Advocating Open Science:
 - Open Neuroscience (http://bit.ly/OpenNeuro)
 - Trend In Africa
 - Mozilla & FreiesWissen Fellow
 - Mapping scientific equipment demand (http://bit.ly/BFOSH)

Overview

- Scientific Hardware
- Open Science Hardware
- Flypi an affordable "all in one lab":
 - Squish things & applications
 - Hardware
 - Software
 - What's next?
- Open Science Hardware as the new norm

Scientific Hardware

- First developed in 16th century
 - Pretty much the same design since

- "Research grade"
 - Base model 5000€
 - Fluorescence +10000€
 - Optogenetics +5000€

Scientific Hardware

- Hard to customize
- Hard to repair
- Hard to update
- Only accessible in some parts of the globe

Shuts a lot of institutions/groups out of science/education

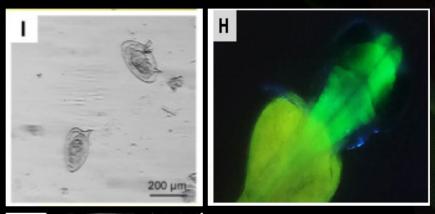
COMMUNITY PAGE

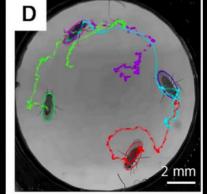
The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, *Drosophila*, and *Caenorhabditis elegans*

Andre Maia Chagas ^{1,2,3,4}*, Lucia L. Prieto-Godino ^{3,5}, Aristides B. Arrenberg ^{1,6}, Tom Baden ^{1,3,4,7}*

- 1 Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany,
- 2 Graduate school for Neural and Behavioural Neuroscience, University of Tübingen, Tübingen, Germany,
- 3 TReND in Africa gUG, Bonn, Germany, 4 Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany, 5 Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland, 6 Institute of Neurobiology, University of Tübingen, Tübingen, Germany, 7 School of Life Sciences, University of Sussex, Brighton, United Kingdom

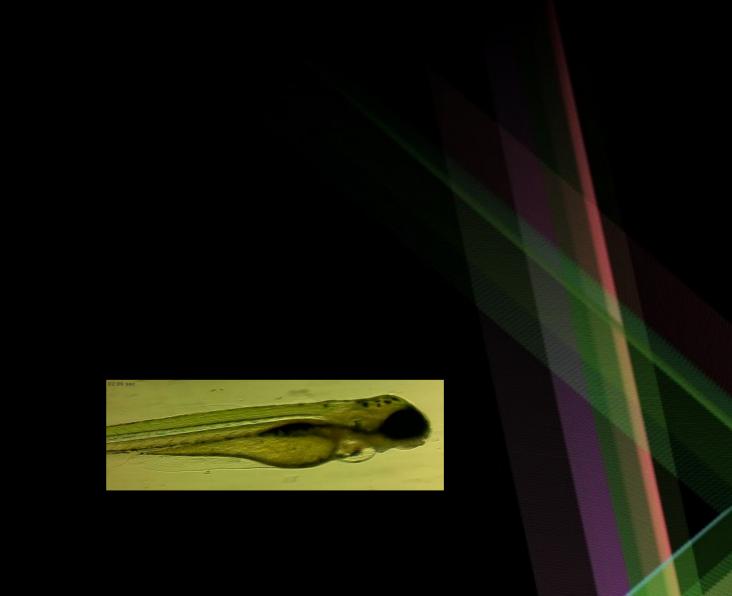
http://bit.ly/flypipos

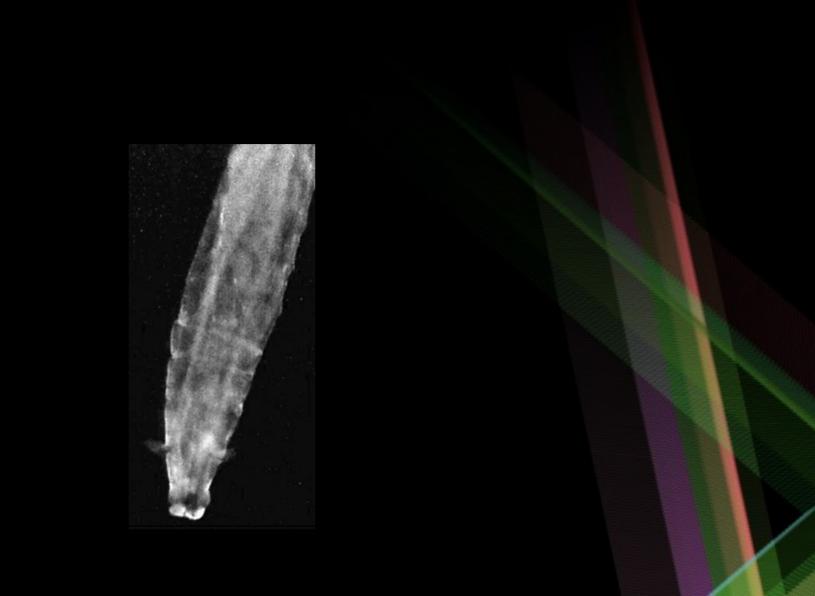




G OPEN ACCESS

^{*}andremaia.chagas@gmail.com (AMC); t.baden@sussex.ac.uk (TB)





Tracking using C-Trax

http://bit.ly/flypipos

Contents lists available at ScienceDirect

HardwareX

journal homepage: www.elsevier.com/locate/ohx


Hardware Article

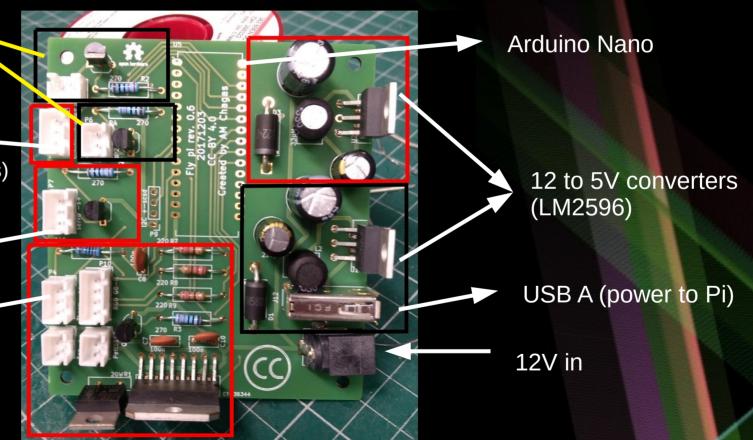
Actifield, an automated open source actimeter for rodents

Victor Wumbor-Apin Kumbol a,*, Elikplim Kwesi Ampofo b, Mary Ayeko Twumasi b

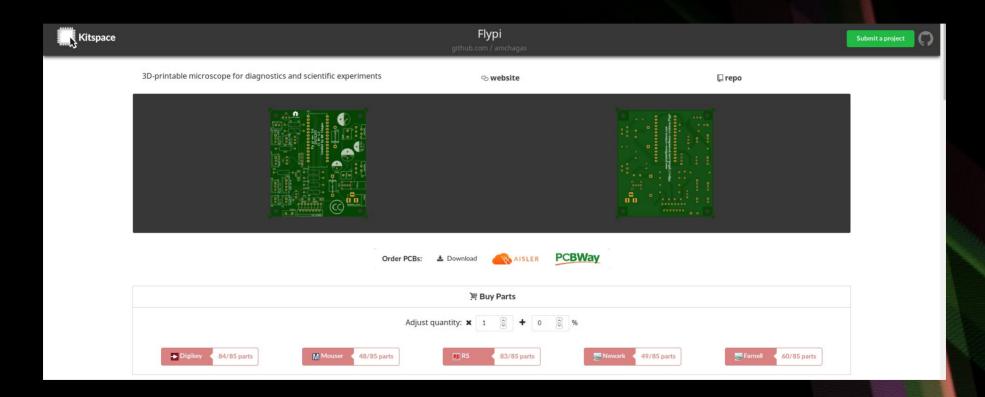
^a Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

b Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Hardware


- 3D printed frame
- Raspberry Pi
- PiCamera
- Arduino Nano
- Custom PCB (KICad)
- Optional: 12V battery
- All released under CERN OHL 1.2

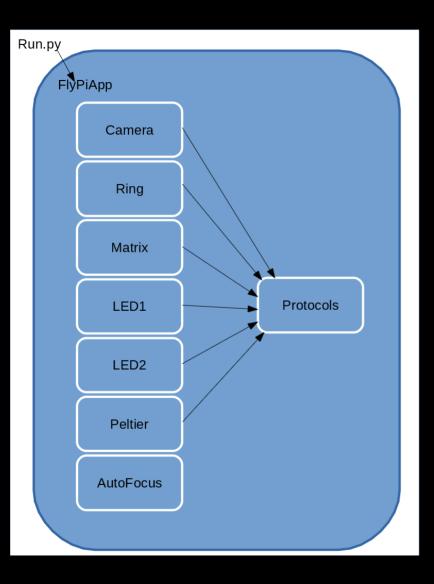
"General ports"
NPN transistor
5V 1A (Fluorescence)


LED Ring
Adafruit Neopixel 12
(Microscopy & optogenetics)

Continuous servo motor port (Focusing)

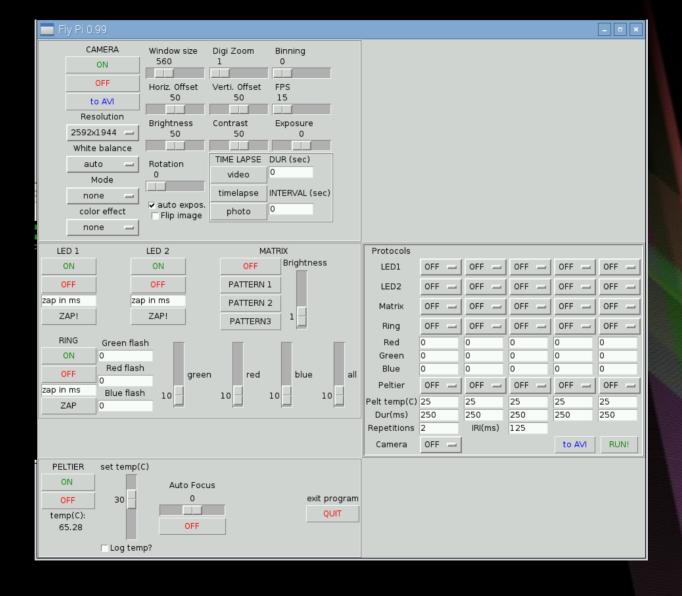
H bridge (L298N) for Peltier element (12V), and temperature sensor (AD22100) for feedback

Get FlyPi components @ Kitspace!



Software

- Raspian
- Python3
 - Pycamera
 - Tkinter
 - PySerial
- Arduino Sketch
 - Serial com
- Precise time control (microsec) of devices


- own code released under CC BY 4.0

Under the hood:

- Each hardware module is controlled with via Python class

GUI

What's next? (GH Issues)

- FlyPi (http://bit.ly/flypirepo)
 - PCB modularity (several blocks)
 - Move GUI to PyQT
 - Camera feed into file/buffer for SSH transmission.
 - Improve camera resolution (software? hardware?)
 - Increase fluorescence options
 - New filters and leds
 - Improve user manuals (http://bit.ly/flypiman)
 - Experimental protocols
 - Prometheus Science: provide Flypi and other OSH science tools as kits/complete sets

Open Science Hardware: New norm?

- FlyPi is one of many projects out there!
 - GOSH Community
 - Make Open Science Hardware ubiquitous by 2025

OS Hardware: Living in the "Cambrian explosion"

- Wikipedia >70 projects (only commercial level/big projects)
- In these slides at least another 36
- Many, MANY more in repositories online

- OS tools to create hardware are getting better and easier
 - Software
 - Fast prototyping
- Lower price for manufacturing
- Internet infrastructure
 - Sharing videos, tutorials, documentation
- Some companies applying OS business models are >5 years old.

OS in research and education

- "Tradional systems:
 - Expensive (fluoresc. Scope >5000€)
 - One supplier commitment
 - Hard to fix/customize/upgrade
 - One per lab/classroom
 - Costly calibrations
 - Bugs hard to spot
 - Fixed, one size (has to) fit all

- OS systems
 - Affordable (fluoresc. Scope <250€)
 - Buy parts from anywhere
 - Know your tools from inside out
 - Many per lab/classroom
 - Calibrate before every experiment
 - Bugs are easier to spot
 - Adaptable to local realities

Build following demand

- Projects normally start with a local need:
 - one lab, in one department, inside one institution...

- What if we could map the needs researchers have?
 - And build OS Hardware based on that demand?
 - Online survey http://bit.ly/BFOSH Please share!
 - Landing page: https://fosh-following-demand.github.io/en/home
 - Repos: https://github.com/FOSH-following-demand

Thanks!

- Twitter: @chagas_am
- Email: andremaia@mozillafoundation.org

Companies/non-profits provinding OS Hardware and services around them

open ephys

